ONLINE IMAGE COLLECTION

Click on Image for JPG rendition
Image Title: Nectary development from inception through maturity
Image Credit: Harry T. Horner, Iowa State University
Intended End User: Teacher, Student
License Details: BSA - Terms for Image Use
Copyright held by: Horner, BSA
For Larger Version (click here)

About the Image

Model systems such as the single, large nectary embedded in the basal wall of the gynoecium (insets on left, c. 203) of tobacco (Nicotiana langsdorffii x N. sanderae Hort. Var Sutton's Scarlet) are contributing to our understanding of the cellular and molecular processes leading to the secretion of nectar, a complex mixture of compounds, near the time of anthesis. Nectary development from inception through maturity involves a number of highly integrated processes to form sugary nectar and compounds such as hydrogen peroxide and antioxidants such as b-carotene and ascorbic acid, which protect the nectar and nectary from microbial activity and auto-oxidation. Horner et al. focused on the production of b-carotene in nectary plastids as the organelles, which are filled with starch early in development, convert to being filled with b-carotene at maturity. The upper three insets show gynoecia at earlier, successive stages of development when their basal nectaries are lime green to green-orange and plastids are filling with starch and increasing in carotenoid content. In the bright orange nectary at maturity (anthesis) (bottom inset), almost all the plastid starch has been converted to sugars, bcarotene, and ascorbic acid. The background image (c. 3400) shows with polarizing optics the internal nectary tissue at anthesis, when the plastids are engorged with needle-like b-carotene crystals. The study helps elucidate the different processes associated with nectar production so that they may be manipulated to enhance the quantity and quality of nectar for attracting insects to enhance cross pollination and hybridization among crop and horticultural plants.


National Science Foundation  Development Supported by the National Science Foundation